NSCT-Based Multimodal Medical Image Fusion With Sparse Representation and Pulse Coupled Neural Network
نویسندگان
چکیده
Multimodal medical image fusion plays a vital role in clinical diagnosis and treatment planning. In the image fusion methods based on nonsubsampled contourlet transform (NSCT) and pulse coupled neural network (PCNN), authors have used normalized coefficient value to motivate the PCNN-processing, which makes the fused image blurred, detail loss and decrease in contrast. In this paper, we present a novel multimodal medical image fusion method by combining sparse representation (SR) and pulse coupled neural network (PCNN) in nonsubsampled contourlet transform (NSCT) domain. Firstly, the source images are decomposed into lowand high-frequency bands in NSCT domain, which are sparsely represented with learned dictionaries. Then `1-norm matrix is used to motivate the PCNN-processing both in lowand high-frequency bands, and large firing times are selected as coefficients of the fused image. Finally, the fused image is reconstructed by performing inverse NSCT. Experimental results show that the proposed scheme outperforms the state-of-the-art methods in subjective quality and objective evaluation criteria.
منابع مشابه
Modeling the potential of Sand and Dust Storm sources formation using time series of remote sensing data, fuzzy logic and artificial neural network (A Case study of Euphrates basin)
Due to the differences between the visible and thermal infrared images, the combination of these two types of images leads to better understanding of the characteristics of targets and the environment. Thermal infrared images are really in distinguishing targets from the background based on the radiation differences and land surface temperature (LST) calculation. However, their spatial resolu...
متن کاملFusion of Thermal Infrared and Visible Images Based on Multi-scale Transform and Sparse Representation
Due to the differences between the visible and thermal infrared images, combination of these two types of images is essential for better understanding the characteristics of targets and the environment. Thermal infrared images have most importance to distinguish targets from the background based on the radiation differences, which work well in all-weather and day/night conditions also in land s...
متن کاملMedical Image Fusion based on Pulse Coupled Neural Network Combining with Compressive Sensing
Image fusion is an important branch of information fusion, widely used in various fields, especially in medical field. So increasing the quality and efficiency of medical image fusion has great significance. Combining the advantages of pulse coupled neural networks with Compressive Sensing; this paper puts forward a novel image fusion method in NSCT transform domain. First, NSCT transform is ap...
متن کاملAn application of swarm intelligence binary particle swarm optimization (BPSO) algorithm to multi-focus image fusion
In this paper, an optimal and intelligent multi-focus image fusion algorithm is presented, expected to achieve perfect reconstruction or optimal fusion of multi-focus images with high speed. A synergistic combination of segmentation techniques and binary particle swarm optimization (BPSO) intelligent search strategies is employed in salience analysis of contrast feature-vision system. Also, sev...
متن کاملMedical Image Fusion by Combining Nonsubsampled Contourlet Transform and Sparse Representation
In this paper, we present a novel medical image fusion method by taking the complementary advantages of two powerful image representation theories: nonsubsampled contourlet transform (NSCT) and sparse representation (SR). In our fusion algorithm, the NSCT is firstly performed on each of the pre-registered source images to obtain the lowpass and high-pass coefficients. Then, the low-pass bands a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016